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(Reoeived 6 September 1978 and in revised form 23 April 1980) 

Experimental results concerning the onset of instability in a spherical gap are presented, 
for the case in which the gap width is not too large with respect to the radius. The two 
spheres may be rotated in the same direction or in opposite directions. The resulting 
flow field and some special observations are described. The first onset of instability is 
recorded and the results are summarized in stability diagrams. It is shown that Taylor’s 
calculations for rotating cylinders are also valid for rotating spheres. Finally, further 
experimental results by several authors concerning the onset of instability between 
rotating cylinders are compared with those for rotating spheres. 

1. Introduction 
In  recent years, several papers have been published dealing with experiments of flow 

between rotating spherical surfaces. All these contributions, for instance Khlebutin 
(1968), Sawatzki & Zierep (1970), Munson & Meguturk (1975), and Wimmer (1976) are, 
however, limited to the case of a rotating inner sphere and a stationary outer one. 
In  the caae of two spheres rotating independently from each other, greater experi- 
mental difficulties arise. This may be the reason why no observations for this case 
are available, except for some reported in a recent Russian publication by Yavorskaya, 
Belyaev t Monachov (1977). 

The present paper deals with the rotation of both spheres, and it is part of an exten- 
sive study of the flow within, between and around rotating spheres (Wimmer 1974). 
Likewise, this work may be considered as a logical extension of a previous publication 
by the author (1976) which included preliminary results. Testing methods, fluid, flow 
visualization, geometry, and the Reynolds-number regime used are similar to those 
described previously (Wimmer 1976). The test arrangement, however, had to be modi- 
fied to a certain extent to meet the special conditions to be described here. A second 
motor was installed which permitted the outer sphere to be rotated independently of 
the inner one in both clockwise and counter-clockwise directions. Some additional 
measuring devices to collect data, such as fluid temperature in the rotating system 
were added. 

The problem considered here is closely related to the flow between rotating coaxial 
cylinders first studied by Taylor (1 923) theoretically and experimentally. In succeeding 
years this type of flow has been subjected to both experimental and theoretical in- 
vestigations by many authors. Therefore it is of interest to compare the previous 
results for rotating cylinders with those of rotating concentric spheres to check on 
their validity for the different geometry. 
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FIGURE 1. Secondary flows. (a) Counter-clockwise current for a stationary outer sphere wg = 0; 
(b)  clockwise current for a stationary inner sphere w1 = 0; (c) counter-rotating currents when both 
spheres rotate in opposite directions. 

2. Flow field 
The flow field between rotating spheres is different from that between rotating 

cylinders. In  the latter case the basic flow is a circular Couette flow whereas the basic 
flow between rotating spheres is fully three-dimensional. The flow between two rotating 
spheres, especially in the vicinity of the inner sphere, is similar to that described in 
the previously citedreferences. It depends on the radius ratio and the angular velocity. 

The resulting secondary flow, i.e. the flow in a meridional plane between the equator 
and the poles, is driven by the imbalance of the centrifugal forces within the spherical 
annulus. The sense of rotation of this swirl is wholly dependent on whether the inner 
or the outer sphere rotates. For a rotating inner sphere (figure lu) the fluid moves 
close to the inner sphere from the poles to the equator. In  the vicinity of the outer 
sphere it returns to the poles, so that a counter-clockwise current occurs in the upper 
right part of the spherical gap. Whereas an outer rotating sphere causes a clockwise 
current which is independent of the sense of rotation of the sphere as shown in figure 1 b. 

Rotation of the inner sphere generates a potentially unstable layer in contrast to 
the stable layer produced by the rotation of the outer sphere. As seen in figure lc ,  
these different layers are in contact with each other within the gap. The spheres’ 
angular velocity ratio determines the thickness of the resulting layers which in turn 
influence the flow field produced. When the spheres are rotated in opposite directions 
two counter-rotating currents may occur. Furthermore, a nodal radius is generated 
within the gap at which the angular velocity w and consequently the circumferential 
velocity v is zero. The local position of the nodal radius is solely dependent on the 
angular velocities w1 and up. Steady rotation of the spheres in the same direction, with 
the same angular velocity (wl = wz) ,  results in the exceptional situation of rigid body 
rotation that includes the fluid. 
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FIGURE 2. Stability diagram for two rotating spheres; RJR, = 0.975, (r = 0.0256. 
@, measurements for concentric spheres; a, Taylor’s theory for coaxial cylinders. 
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FIGURE 3. Stability diagram for two rotating spheres; RJR, = 0.900, (r = 0.1 11. 0, measure- 
ments for concentric spheres; ., Taylor’s theory for coaxial cylinders. 

3. Stability diagrams 
3.1. Measurements 

The inner and the outer spheres have radii R, and R, respectively, and can rotate in 
the same direction as well as in opposite directions. In both cases instabilities may 
arise with growing Reynolds numbers. The first onset of instability, seen by eye, was 
recorded for both cases and varying width of the gap. The results of these experiments 
are illustrated in stability graphs. Figures 2 and 3 are representative for a relatively 
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Ta, - 
Method Author case (a) Case (b) 

Theory for cylinders Taylor 41.71 43.81 
Theory for cylinders Kirohgassner 41-40 43.63 
Theory for spheres Walton 42.80 43.03 
Experiment Yavorskaya et al. - 44.82 
Experiment Wimmer 41-97 42-99 

TABLE 1. Critical Taylor numbers for two sets of spheres. Case (a): R, = 7.8 cm, R, = 8-0 cm, 
8 = 0.20 cm, u = 0.0256, R,/R, = 0.975. Case (b ) :  R, = 7.2 om, R, = 8.0 cm, 8 = 0.80 cm, 
u = 0.111, RJR, = 0.900. 

small (a < 0.1) and a relatively large (a > 0.1) width of the gap (a = 8/R1, 8 = gap 
width = R2- Rl). The Reynolds number Re = R;w,/v based on the angular velocity 
of the inner sphere w1 is plotted on the ordinate. The corresponding values R;w2/v 
for the outer sphere are plotted on the abscissa (where w2 is now the angular velocity 
of the outer sphere). In the right quadrant, both spheres rotate in the same direction, 
and in the left quadrant, the spheres rotate in opposite directions. Because the angular 
velocity of the inner sphere is defined to be positive, the right-hand part of the abscissa 
is denoted by + R2,w2/v and the left-hand part by - R2,w2/v in the following. 

The left-hand part of the abscissa and the dashed line in the right quadrant represent 
a theoretical boundary for stability. This dashed line is valid for inviscid flow and it 
is based on Rayleigh’s (1916) stability criterion d(wr2)2/dr > 0. By dropping all positive 
terms this expression may be written in the form 

w ( w 2 ~ ! j - w 1 ~ ~ )  > 0. (1)  

When both spheres rotate in the same direction, (1) predicts that the product 
w2r!j must always be greater than wlrf to obtain stability. With the radius ratio de- 
noted byq(7 = R2/R, > l) ,  equation (1) requires q2w2 > wl. Thus, the angular velocity 
of the outer sphere w, must be greater than the angular velocity of the inner sphere 
w1 by at least q2 for stable flow to occur in the gap. Otherwise the motion is unstable. 
For the gap width u = 0.0256 and cr = 0.111, these values are 1-05 and 1-23, respec- 
tively. If the spheres are rotated in opposite directions, w changes its sign within the 
space between the spheres. Therefore (1)  is not satisfied within the entire volume of 
the fluid, i.e. the motion becomes unstable. 

Experiments with a viscous fluid in the gap between two concentric rotating spheres 
show the same behaviour. The width of the gap acts as a geometric parameter. These 
results are in agreement with those of Yavorskaya, Belyaev & Monachov (1977), who 
studied the same gap width of a = 0.11. The noted difference of 4 yo for this gap width 
is within the accuracy of the measurements. It turns out that the critical Reynolds 
number for w2 = 0 given by Yavorskaya et al. is about 2 % above and that one of the 
present experiment gives a value of 2 yo below the theoretical value. Table 1 compares 
critical Taylor numbers for w2 = 0 found by different theoretical methods and experi- 
ments for the two described gap widths. 

An increase in the gap width causes decreasing values of Rf w/v .  For the two examples 
described the values differ by one order of magnitude. A contribution by Coles (1  967) 
demonstrates that for rotating cylinders this geometric parameter can be nearly 
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suppressed by a proper choice of variables when the cylinder’s relative sense of rotation 
is treated separably. As is shown in $4, these considerations are equally valid for 
rotating spheres. 

Figures 2 and 3 show that the measured values for viscous fluids wymptotically 
approach the dashed line of Rayleigh’s criterion for inviscid flow with increasing 
values of + R;w,/v if the spheres (or cylinders) rotate in the same direction. In  the 
left quadrant, applicable to spheres (or cylinders) rotating in opposite directions, no 
asymptotic behaviour is detectable. However, an inflexion point occurs so that values 
of - R?w,/v are produced which are higher than q w l / v .  The consequence is that at 
constant kinematic viscosity the outer sphere rotates faster than the inner one and 
nevertheless instability is produced. The motion is unstable, however, only in that 
region for which Rayleigh’s criterion predicts instability. That region covers the 
portion of the fluid located between the inner sphere and the nodal radius. Beyond the 
point of inflexion, the nodal radius at  which w and v are zero is shifted in the direction 
of the inner sphere. Hence, the stable layer of fluid generated by a rotating outer 
sphere becomes thicker than the unstable layer around the inner sphere. We will 
call the layer’s thickness s” and we have Sstsble > S;mstable. The thickness of the layer 
producing unstable flow is also smaller than the geometrical gap width so that 
Bunstable < sgeometrlc. That is why only vortices of shorter wavelength and disturbed 
flow modes (Wimmer 1976) can be obtained, as they appear for smaller widths of the 
gap. 

The point where the curves intersect the ordinate of figures 2 and 3, designates the 
onset of instability in the case of a rotating inner sphere and a stationary outer one 
(w, = 0). The curves fitted to the measured points thereby constitute border lines for 
real fluids, i.e. below these curves no instabilities in form of Taylor-Gortler vortices 
are possible and above them the flow is always unstable. The stability boundaries 
memured for two concentric spheres demonstrate the same behaviour as those cal- 
culated by Taylor - and verified experimentally - for two coaxial cylinders. 

3.2. Calculations 
For sufficiently small gap widths, the situation in the immediate vicinity of the equator 
of the spheres is very similar to that between two cylinders. Furthermore, it is well 
known that the instabilities always develop in the equatorial plane. Recently Walton 
(1978) displayed the same facts. In  his work the problem of instability of the flow in a 
narrow spherical annulus is discussed theoretically. Walton deduces that the critical 
value of the Taylor number T, for which instabilities near the equator first occur, 
is given by a small correction to the minimum Taylor number for rotating cylinders. 
Near the equator, this correction is of order cr. He writes 

T = To +ST,, 

(Walton 1978, p. 690) with e = cr and To = the minimum value 1694.95. The correction 
term Tl can be calculated from 

Tl = 104[(m- 4) 7 ~ -  8*267/e - 6.78]/8.58 (3) 

where m is an integer which must be calculated separately. Walton (1978) found good 
agreement between his calculated values and my experimental data (Wimmer 1976). 
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For the two gap widths discussed in the present paper, the critical values are calcu- 
latedwith Walton’s method and compared with the experiments. Thus, for agap width 
CT = 0.0256 the critical value of the Taylor number Ta = 42.80 (Ta = R,sw/v(s/R,)+ 
= Ti), with m = 107 and T, = 5347, compared with the experimental value of Ta = 
41-97. For the gap width cr = 0.1 1 1  these values are Ta = 43.03 with m = 27 and T, = 
1409, compared with the experimental value of Ta = 42.99. The difference between 
experiment and theory is less than 2 %. Such a discrepancy is within the accuracy 
of the measurements. 

On the other hand, Kirchglssner’s (1961) theory for the calculation of the critical 
Reynolds numbers for arbitrary gap widths for rotating cylinders is also applicable 
for rotating spheres (Wimmer 1976). This fact together with the similarities in the 
shapes of the stability boundaries clearly indicates the applicability of Taylor’s 
stability calculations also to the case of rotating spheres. 

The first step to prove this assertion was to calculate the onset of instability for a 
rotating inner sphere and a stationary outer one. In  the diagrams this is the point on 
the ordinate where R2,w,/v equals zero. Using Taylor’s notation, the angular velocity 
ratio w2/w1 is designated by p, and rotation in the same and opposite direction is 
indicated by +p and -p  respectively. Thus, for a stationary outer sphere ,u must 
equal zero. For rotation in the same direction and a small rotation in the opposite 
direction, the original formula which describes the dependence of the angular velocity 
ratio on a parameter P can be taken directly from Taylor’s paper (1923, p. 309, eq. 
(5.43)) as 

P =  7r4v2( R, + R,) 
2@~3R3 1 - R&u/Rf) (1 -p )  ‘ (4) 

The inverse of this value was later called the Taylor number T = w2,s3R,/v2, for an 
outer wall at rest and with s < R,. Here the parameter P is used with the additional 
term (Taylor 1923, p. 318, eq. (7.11)) because u is certainly small but not negligible: 

+0-00056 (i -- Tz 0*652~ /R, ) -~ .  (5) 

For a higher speed ratio in the opposite direction, however, Taylor’s data must first 
be modified before application to the special conditions pertaining to a spherical 
geometry. In doing so, one obtains the angular velocity ratio ,u = - 1.576 for 
u = 0.0256 and p = - 1.403 for cr = 0.1 11 .  Hence, in a range of - 0.61 < p < 0.92 
every point can be calculated and additionally p = - 1-576 for CT = 0.0256. For 
IT = 0.111 the calculated points ranges from p = -0.60 to ,u = 0.80 with the 
additional value of p = - 1.403. Within these limits, Taylor’s calculations may be 
applied to rotating spheres for both relatively small as well as relatively large gap 
widths. 

Comparison of the theoretical results obtained by the described method and experi- 
ments shows excellent agreement. The calculated and the experimental values fall 
on the same curve in the range of the investigation. The detailed data are listed in 
table 2. An explanation for the good agreement between the values obtained experi- 
mentally for concentric spheres and the values obtained by the calculation for cylin- 
ders is provided by the fact already mentioned: for small gap widths, the situation 
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1 

0 
10 104 

FIQURE 4. Collected data in appropriate co-ordinates for cylinders and spheres rotating in same 
direction. For coaxial cylinders; RJR,: 

0, 0.500, Donnelly & Fultz 
+ , 0.584, Lewis 
A, 0.698, L0WiS 
0, 0.743, Taylor 
Y, 0.736, Lewis 

0, 0.900, Wimmer, experiment 
0 ,  0.900, Wimmer, theory 
@,0.975, Wimmer, experiment 
0,  0.975, Wimmer, theory 

* , 0-854, Lewis 
x , 0.873, Coles 
A ,  0.880, Taylor 
V, 0.942, Taylor 

For concentric spheres; RJR,: 

in the immediate vicinity of the equator of the spheres, where the Taylor vortices 
always develop first, is nearly the same as that between rotating cylinders. Thus, 
we are justified in stating that stability diagrams for the flow between spherical 
surfaces can be obtained not only from experiments but also from a theoretical method. 

4. Comparison with cylinders using Coles' diagrams 
As mentioned above, most of the considerations concerning the onset of instability 

between rotating cylinders are also valid for rotating spheres. In  order to prove this 
statement, the critical data for rotating spheres are here compared with those for 
rotating cylinders. Coles (1 967) nearly suppressed the geometrical parameter by 
treating rotation in the same direction and in opposite directions as separate cases. 
Coles collected the data of several authors concerning the onset of instability between 

5-2 
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10 102 I 03 I 0 4  10s 106 107 
B 

FIGURE 5. Collected data in appropriate co-ordinates for cylinders rtnd 
spheres rotating in opposite directions. For legend, see figure 4. 

- 
V 

rotating cylinders, for a wide range of gap withs, and this data is reproduced here. 
The new critical data for rotating spheres are represented by circles in the Coles’ 
diagrams as is shown figures 4 and 5.  

The co-ordinates and the quantities A and B are based on the formula v = Ar + B/r  
obtained for a steady Couette flow between rotating cylinders. However, the basic 
flow in a spherical annulus is described for low Reynolds numbers by 

v = (Ar+B/r2)sinO. 

Thus, the constants A and B are different in the case of spheres. For small spherical 
gap widths the flow near the equator is, however, very similar to that between rotating 
cylinders as also noted by Walton (1978). The constants A and B are analogously 
similar for the spherical gap Aow near the equator (sin8 = 1) in comparison to the 
cylindrical case. The simpler formula for rotating cylinders was in fact also found to 
be sufficient for describing the initiation of instability between spherical walls, a t  
least for small and moderate gap widths. 

The figures show that the critical data for rotating spheres exhibit the same behaviour 
as the data for cylinders rotating in both the same and opposite directions. Therefore, 
the above mentioned assertion is confirmed. For small and moderate gap widths, the 
flow in the immediate vicinity of the equator of the spheres is similar to  that between 
two coaxial cylinders. Consequently, one can conclude that the first appearance of 
Taylor vortices, which always develop at the equator, follows the same trends as 
those established for the cylindrical case. Hence, it is evident that - at least for small 
and moderate gap widths - stability diagrams for the flow between rotating spheres 
may be obtained theoretically without engaging in experimentation. 

5. Some characteristic flow observations 
When both spheres rotate flow phenomena are observed which do not appear when 

the outer sphere is stationary. Aside from the difference between the wavelength of 
the vortices and the geometrical gap width for counter-rotating spheres, contours of 
the developing vortices are produced which are not so sharp as when the outer sphere 
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I 

(a) ( b )  

outer one at rest; (b)  counter-rotating cylinders. 
FIGURE 6. Streamlines of the vortices in the cylindrical owe. (a) Inner cylinder rotates, 

FIGURE 7. Streamlines of the vortices in the spherical case. (a) Inner sphere rotates, outer 
one at rest, ( b )  fast counter-rotating spheres; (c) slightly counter-rotating spheres. 

is stationary. This behaviour is caused by two effects acting independently of each 
other. These effects are due to the spherical gap flow and they do not occur for the flow 
between rotating cylinders. For a rotating inner cylinder and an outer one at  rest the 
well known sharply divided pattern of vortices is apparent, as shown in figure 6a.  
For the case of counter-rotating cylinders, the space between the cylindrical walls is 
divided into two different parts: an inner part with vigorous vortices that have still 
nearly square cross-sections and an outer part with deformed vortices having a very 
much weaker opposite rotation. These vortices - the inner and the outer ones - are 
in contact with each other, i.e. the outer weaker vortices are induced by the vigorous 
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FIGURE 8. Streamlines of the vortices for a rotating inner sphere and 
outer one at rest; p = 0. 

inner ones (figure 6b). That part of the gap width, however, which may be unstable 
according to the theory (here the square of the circulation decreases with the radius), 
is larger in the experiment than would be expected by the theory (dashed lines in 
figures 6b, 7 b ,  c). The outer vortices with very weak rotation exist only since the basic 
flow in the cylindrical case is purely one-dimensional, i.e. a circular Couette flow. As 
a consequence we see the same pattern as if the outer cylinder were at  rest (figures 
6a, b). 

For a rotating inner sphere with the outer one at rest the pattern of the S-shaped 
Streamlines of the vortices can be observed. This pattern is the same as that of the 
cylindrical case, as shown in figures 7( a) and 8. In contrast to the cylindrical case the 
basic flow between rotating spheres is fully three-dimensional (figure lc). The con- 
sequence for a sufficiently large counter-rotation is that the very weak vortices of the 
outer range, which are on the point of developing, are carried with the basic flow up 
to the poles, and are not established at all. So a purely undisturbed big meridional 
loop occurs which acts like an optical filter with respect to the observed vortices. 
Figure 7( b) illustrates that behaviour. The same pattern of the S-shaped streamlines 
of the vortices appears, although it is less pronounced. For slightly counter-rotating 
spheres the vigorous vortices linked to the inner wall are again larger than the theo- 
retically expected spacing. Therefore, they extend to the outer spherical shell. Due 
to the non-slip condition for viscous fluids the portion of the fluid near the outer wall 
is dragged along in the direction of the outer spherical shell. This results in a defor- 
mation of the streamlines of the vortices. As seen in figure 7( c) and 9, the streamlines 
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FIGURE 9. Streamlines of the vortices for slightly counter-rotating spheres; ,u = - 0.07. 

now become U-shaped. The strength of the deviation is dependent on the speed of 
the outer sphere. Because of the deviation the light is reflected in another way dis- 
playing less contrast with respect to the vortices’ shapes. 

In the case of counter-rotating spheres, it is very difficult to determine precisely 
when the transition to unstable flow occurs. The difficulty arises from the high angular 
velocities involved. Quite often disturbances caused by a spiral instability occur 
around the pole (Wimmer 1976). For spheres rotating in opposite directions, it  is 
possible to create the spiral instability around the pole earlier than that of the Taylor- 
Gortler type at the equator. By incrertsing the angular velocity, the arms of the spirals 
are extended downward to the equatorial plane and they influence the developing 
Taylor vortices. These differing types of instability overlap each other and the whole 
configuration becomes wavy. As a consequence, the first onset of instability is more 
difficult to detect in this special case, resulting in a decrease in the accuracy of the 
measurements. We have 5 yo accuracy of the critical Reynolds numbers for rapid 
counter-rotation as compared to about 2 yo for all other cases. 

6. Conclusions 
The behaviour of instabilities which arise in fluids enclosed between two rotating 

spherical surfaces is, in principle, similar to that for a rotating inner sphere and a 
stationary outer one. There are, however, some differences. When only the inner 
sphere rotates, the entire portion of the fluid between the spheres may be unstable 
according to Rayleigh. Thus, the unstable layer’s thickness equals the gap width and 
ie always constant. Another result of a previous paper (Wimmer 1976) shows that the 
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behaviour of the vortices is completely different for gap widths u < 0.1 than for 
u > 0.1. Rotating the spheres in opposite directions generates different sizes of an 
unstable layer for different angular velocity ratios. Consequently, the thickness of 
the unstable layer is always smaller than the geometrical gap width. Hence, vortices 
are produced with a smaller wavelength. This implies that the disturbed flow modes 
correspond to those for smaller widths of the gap. Furthermore, the shapes of the 
vortices display less contrast when both spheres are rotated. This effect is most 
noticeable when the spheres are counter-rotated. The explanation for this effect was 
discussed in the previous text. 

A comparison of the experimental and theoretical results concerning the insta- 
bilities show good agreement. Walton’s ( 1978) theoretically obtained data are within 
the accuracy of the measurements. The calculations of Taylor (1923) and Kichglssner 
( 1  961), as well as Coles’ (1967) method of suppressing the geometrical parameter - 
all derived for rotating cylinders - are applicable to rotating spheres without serious 
restrictions. Thus, it has been proven that stability diagrams depicting the flow 
between rotating spheres with small and moderate gap widths can be obtained theo- 
retically without resort to laborious measurements. 

Further tasks remaining are to clarify the degree to which the methods described 
herein are applicable for very wide spherics1 gap widths. There, as reported by Munson 
& Menguturk (1975), no regular Taylor vortices are detectable utilizing the method of 
flow visualization. A possible method may be to determine the critical values employing 
friction torque measurements and to  translate them into stability diagrams. This work 
will surely require a greater experimental effort. It is assumed, however, that the 
transition points for larger gap widths can fit into the procedure described above, 
at  least up to those gap widths for which the previously mentioned methods are valid 
for the cylindrical case itself. 

Some of the results described in this paper were reported at the Euromech Collo- 
quium 56 in London in 1975 and at the GAMM-meeting in Graz, Austria, in 1976 
(Wimmer 1977). 

A referee has pointed out that a similar Rayleigh criterion for spheres has been 
obtained by A. M. Waked & B. R. Munson. Experiments on the stability of the flow 
in a spherical annulus are also presented in this work, which was published in the 
Journal of Fluids Engineering, vol. 100, 1978, after the present paper was first sent 
to the Journal of Fluid Mechanics. 
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